首页> 外文OA文献 >Extraction of uranium from seawater : Design and testing of a symbiotic system
【2h】

Extraction of uranium from seawater : Design and testing of a symbiotic system

机译:从海水中提取铀:共生系统的设计和测试

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Seawater is estimated to contain 4.5 billion tonnes of uranium, approximately 1000 times that available in conventional terrestrial resources. Finding a sustainable way to harvest uranium from seawater will provide a source of nuclear fuel for generations to come, while also giving all countries with ocean access a stable supply. This will also eliminate the need to store spent fuel for potential future reprocessing, thereby addressing nuclear proliferation issues as well. While extraction of uranium from seawater has been researched for decades, no economical, robust, ocean-deployable method of uranium collection has been presented to date. This thesis presents a symbiotic approach to ocean harvesting of uranium where a common structure supports a wind turbine and a device to harvest uranium from seawater. The Symbiotic Machine for Ocean uRanium Extraction (SMORE) created and tested decouples the function of absorbing uranium from the function of deploying the absorbent which enables a more efficient absorbent to be developed by chemists. The initial SMORE concept involves an adsorbent device that is cycled through the seawater beneath the turbine and through an elution plant located on a platform above the sea surface. This design allows for more frequent harvesting, reduced down-time, and a reduction in the recovery costs of the adsorbent. Specifically, the design decouples the mechanical and chemical requirements of the device through a hard, permeable outer shell containing uranium adsorbing fibers. This system is designed to be used with the 5-MW NREL OC3-Hywind floating spar wind turbine. To optimize the decoupling of the chemical and mechanical requirements using the shell enclosures for the uranium adsorbing fibers, an initial design analysis of the enclosures is presented. Moreover, a flume experiment using filtered, temperature-controlled seawater was developed to determine the effect that the shells have on the uptake of the uranium by the fibers they enclose. For this experiment, the A18 amidoxime-based adsorbent fiber developed by Oak Ridge National Laboratory was used, which is a hollow-gear-shaped, high surface area polyethylene fiber prepared by radiation-induced graft polymerization of the amidoxime ligand and a vinylphosphonic acid comonomer. The results of the flume experiment were then used to inform the design and fabrication of two 1/10th physical scale SMORE prototypes for ocean testing. The A18 adsorbent fibers were tested in two shell designs on both a stationary and a moving system during a nine-week ocean trial, with the latter allowing the effect of additional water flow on the adsorbents uranium uptake to be investigated. A novel method using the measurement of radium extracted onto MnO₂ impregnated acrylic fibers to quantify the volume of water passing through the shells of the two systems was utilized. The effect of a full-scale uranium harvesting system on the hydrodynamics of an offshore wind turbine were then investigated using a 1/150th Froude scale wave tank test. These experiments compared the measured excitation forces and responses of two versions of SMORE to those of an unmodified floating wind turbine. With insights from the experiments on what a final full-scale design might look like, a cost-analysis was performed to determine the overall uranium production cost from a SMORE device. In this analysis, the capital, operating, and decommissioning costs were calculated and summed using discounted cash flow techniques similar to those used in previous economic models of the uranium adsorbent. Major contributions of this thesis include fundamental design tools for the development and evaluation of symbiotic systems to harvest uranium or other minerals from seawater. These tools will allow others to design offshore uranium harvesting systems based on the adsorbent properties and the scale of the intended installation. These flexible tools can be tuned for a particular adsorbent, location, and installation size, thereby allowing this technology to spread broadly.
机译:海水中估计含有45亿吨铀,约为传统陆地资源可利用量的1000倍。寻找一种从海水中收集铀的可持续方式,将为子孙后代提供核燃料来源,同时也为所有获得海洋资源的国家提供稳定的供应。这也将消除存储乏燃料以备将来可能进行后处理的需要,从而也解决了核扩散问题。尽管已经研究了从海水中提取铀的方法,但迄今为止,还没有提出一种经济,可靠,可在海洋中使用的铀收集方法。本文提出了一种海洋共生铀的共生方法,其中一个共同的结构支撑着风力涡轮机和从海水中收获铀的装置。创建并测试了用于海洋铀提取的共生机(SMORE),它将吸收铀的功能与部署吸收剂的功能分离开来,这使得化学家可以开发出更高效的吸收剂。最初的SMORE概念涉及一种吸附剂设备,该设备通过涡轮机下方的海水和位于海面上方平台上的洗脱装置循环。这种设计可以更频繁地进行采集,减少停机时间,并降低吸附剂的回收成本。具体而言,该设计通过包含铀吸收纤维的坚硬,可渗透的外壳使设备的机械和化学要求脱钩。该系统设计用于5兆瓦NREL OC3-Hywind浮动翼梁风力涡轮机。为了使用铀吸附纤维的外壳,优化化学和机械要求的脱钩,提出了对外壳的初步设计分析。此外,开发了使用经过过滤的,温度可控的海水进行的水槽实验,以确定贝壳对它们包围的纤维的吸收对铀的影响。在本实验中,使用了橡树岭国家实验室(Aak Ridge National Laboratory)开发的基于A18 ox胺肟的吸附纤维,它是中空齿轮状的高表面积聚乙烯纤维,它是由radiation胺肟配体和乙烯基膦酸共聚单体的辐射诱导接枝聚合制备的。然后,将水槽实验的结果用于指导两个1/10物理规模SMORE原型的设计和制造,以进行海洋测试。在为期九周的海洋试验中,A18吸附剂纤维在固定系统和移动系统上均以两种壳设计进行了测试,通过后者的试验,可以研究额外的水流量对吸附剂铀吸收的影响。使用了一种新颖的方法,该方法利用提取到MnO2浸渍的丙烯酸纤维上的镭的测量方法来量化通过两个系统的壳体的水量。然后使用1 / 150th Froude规模波箱试验研究了全尺寸铀收集系统对海上风力涡轮机水动力的影响。这些实验将两种版本的SMORE与未修改的浮动式风力涡轮机的测得的激振力和响应进行了比较。从实验中了解最终的全面设计可能是什么样的,进行了成本分析,以确定SMORE设备的总体铀生产成本。在此分析中,使用类似于铀吸附剂先前经济模型中使用的现金流量折现法,计算并汇总了资本,运营和退役成本。本文的主要贡献包括用于开发和评估从海水中收集铀或其他矿物质的共生系统的基本设计工具。这些工具将允许其他人根据吸附剂的性质和预期安装的规模来设计海上铀收获系统。这些灵活的工具可以针对特定的吸附剂,位置和安装尺寸进行调整,从而使该技术得以广泛传播。

著录项

  • 作者

    Haji, Maha Niametullah;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号